

Performance and Analysis for Deflection Routing in Buffer-less Networks Using ns-3

ENSC833: Network Protocol and Performance - Spring 2019 (Final Project)

Lucy Malsawmtluangi & Renjie Wang

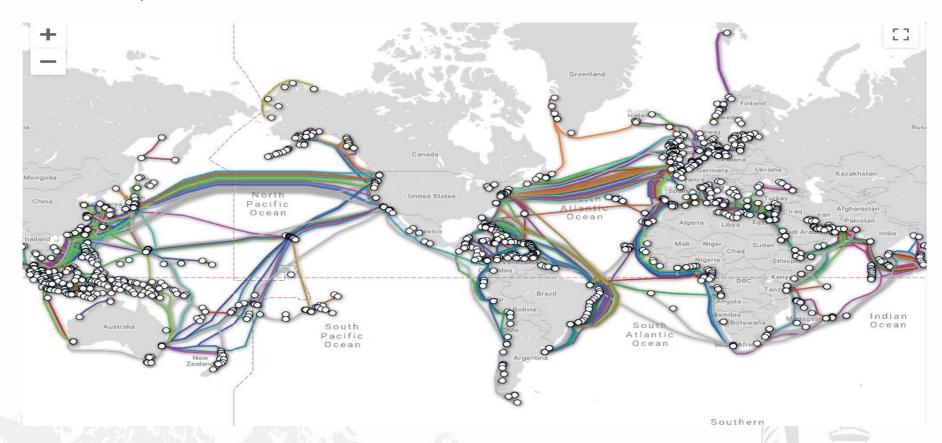
Roadmap

- Introduction/Motivation/Goal
- Related Work
- Technical Details/Problem Description
- Implementation Tools/Design/Simulation/Result
- Challenges

Goal

- Study Contention resolution in buffer-less networks such as OBS
- Enhance existing routing protocols by adding viable contention solution
- Delve Deflection Routing implementation using ns-3

*OBS - Optical Burst Switching


*ns -3 Network Simulator

Motivation

- Improve transmission in switch and routers
 - Reduce packet loss and delay
- Existing technology OBS

Motivation

Subsea Optical Fiber Cable

https://www.submarinecablemap.com/

Traditional routing algorithms

- map the network topology to a weighted graph
- set the weight of each edge such as number of hops to destination, congestion, latency, link failure, or the business relationships between the edge nodes
- minimum cost
 - S. Haeri and L. Trajkovic['], "Deflection Routing in Complex Networks," in *Complex Systems and Networks*, Berlin, Springer, 2015, pp. 395-422.
- However, reinforcement learning is used in a dynamic environment.
 - L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: a survey," *J. of Artificial Intelligence Research*, vol. 4, pp. 237–285, 1996.

- Reinforcement learning agent that generates deflection decisions:
 - the state of the environment
 - reinforcement signals from the environment
 - a learning algorithm
 - S. Haeri and L. Trajkovic['], "Deflection Routing in Complex Networks," in *Complex Systems and Networks*, Berlin, Springer, 2015, pp. 395-422.

Q-learning

- a simple reinforcement learning algorithm that has been employed for path selection in deflection routing
 - C. J. C. H. Watkins and P. Dayan, "Technical note, Q-learning," *Machine Learning*, vol. 8,no. 3, pp. 279–292, May 1992.

$$Q^{new}(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}$$

Q-learning

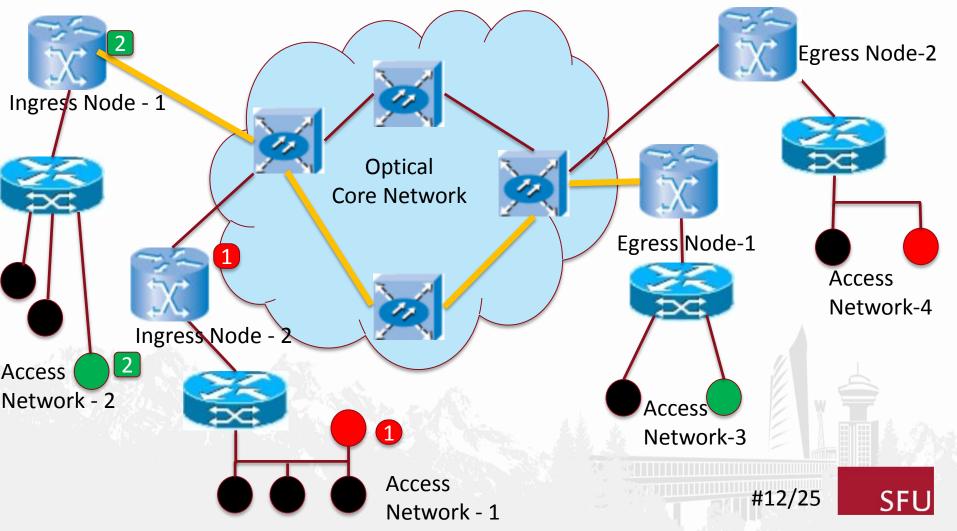
- Does not generate an optimal routing policy
 - S. Haeri and L. Trajkovic['], "Deflection Routing in Complex Networks," in Complex Systems and Networks, Berlin, Springer, 2015, pp. 395-422.
- Distributed gradient ascent policy search
 - L. Peshkin and V. Savova, "Reinforcement learning for adaptive routing," in Proc. Int. Joint Conf. Neural Netw., Honolulu, HI, USA, May 2002, vol. 2, pp. 1825–1830.

Reinforcement learning are not widely used

- Business relationships between Internet service providers
- Randomness is not a desired property
 - S. Haeri and L. Trajkovic['], "Deflection Routing in Complex Networks," in *Complex Systems and Networks*, Berlin, Springer, 2015, pp. 395-422.

Technical Details – Problem Statement

- Optical Networks (Metro, Long haul, Subsea) are facing unprecedented growth and challenges to deliver a consistent quality end-user experience.
- Multiple researches are conducted by Universities and Industry (leaders such as Ciena and Coriant)
 - To provide **scalable and secure network** capacity that is both faster and smarter giving them a huge competitive advantage.
- Deflection routing is one such solution which can effectively reduce the traffic loss due to contention hence providing high quality end-user experience.


Optical Burst Switching (OBS)

- Packets with the same destination are aggregated at ingress nodes to form bursts.

A control packet is sent ahead of a burst to create optical cross connects to reserve wavelength per hop. **Egress Node Ingress Node Optical** Core Network **Access** Network-4 Access Network-3 Access Access Network-2 Network-1 #11/25

OBS – Contention Scenario

- Since only one cross connect can be formed at a given point of time, if another burst arrives when the first burst is still in progress, the latter burst is dropped due to contention.

Implementation - Deflection Routing

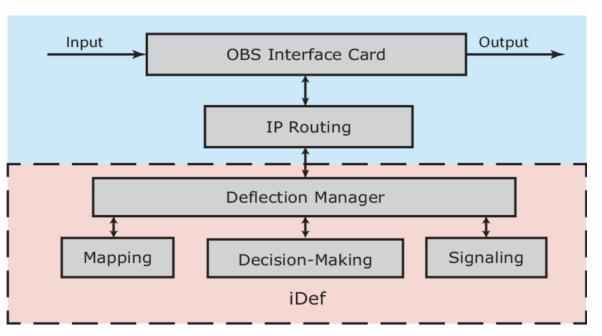
- It is a viable contention resolution scheme that are employed in buffer-less networks.
- It comprises of algorithms that can deflect the packets/traffic through another sub-optimal path in case two or more bursts have to be routed through the same outgoing link (based on routing decisions that computed the best path).
- Using BRITE, we generated multiple Waxman topologies with node counts of 10, 20, 50, 100, 200, 500 and 1000 to validate Q-NDD, PQDR Deflection Routing Algorithms.

Q-learning-based Node Degree Dependent (Q-NDD)
Predictive Q-learning Deflection Routing (PQDR)

Implementation - Tools

 Network Simulator (Ns-3) – It is a discrete-event computer network simulators written in C++ and widely used for research purpose.

ns-3 [Online] https://www.nsnam.org/docs/models/html/index.html (Accessed Jan, 2019)


 Google Test Framework (G-Test) – It is a Unit Testing Library from Google primarily used for C++ programming language.

G-Test [Online] https://github.com/google/googletest (Accessed Feb,2019)

 Boston University Representative Internet Topology Generator (BRITE) – It is a synthetic topology generator that accurately reflect many aspects of the actual Internet topology.

BRITE [Online] https://www.cs.bu.edu/brite/ (Accessed Feb, 2019)

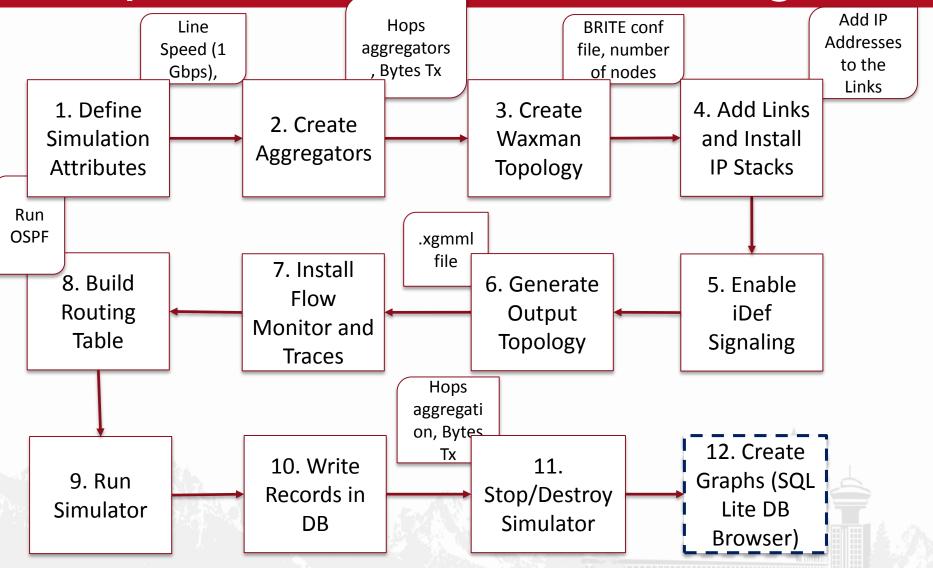
Implementation – iDef Framework^{\$}

iDef Framework – designed to facilitate development of reinforcement learning based deflection routing protocols.

Deflection Manager – It glues together iDef modules (*mapping* – map received variables into *state*, *decision-making* – implements learning algorithm, *signaling* – adds header fields to the Deflected bursts)

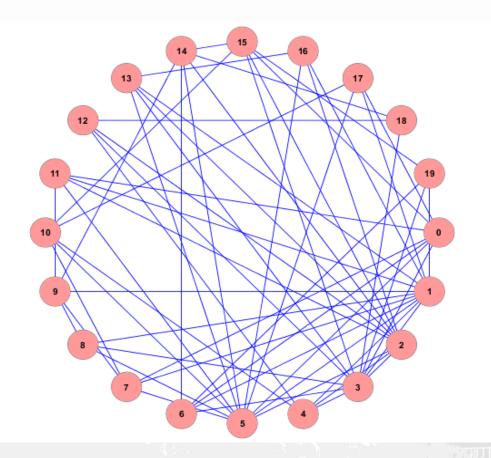
\$Intelligent Deflection Routing in Buffer-Less Networks — Soroush Haeri and Ljiljana Trajkovic (Fellow, IEEE)
Intelligent Deflection Routing in Buffer-Less Networks

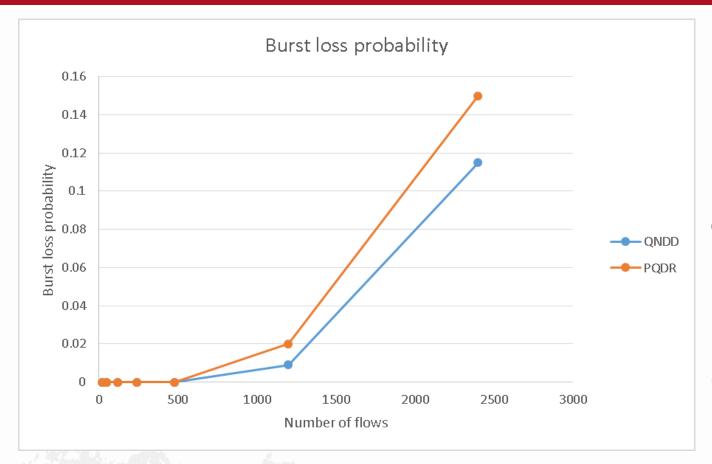
#15/25



iDef Framework^{\$}

- To download the software package, either click on the link below to directly fetch the tar files.
 - 1) idef_framework.tar
 - Or, if you have Mercurial installed, the following command can be used:
 - > hg clone https://www.bitbucket.org/shaeri/hmm-deflection
- Compilation:
 - > CXXFLAGS='-Wno-error -std=c++98' ./waf --enable-examples configure
 - > ./waf
- Running test scripts:
 - > ./waf --run 'rldrs-brite-waxman --NumFlows=2200 --nNodes=1000'


Implementation - Block diagram

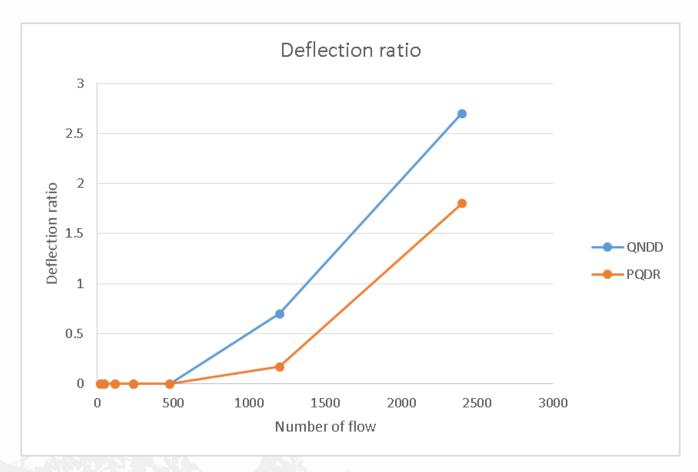

SFL

Implementation — Output File

- XGMML File shows the topology.
- A sample topology with 20 nodes

Graphs and Results – Burst loss

Burst loss probability = (Number of burst loss / Total number of transmitted burst)

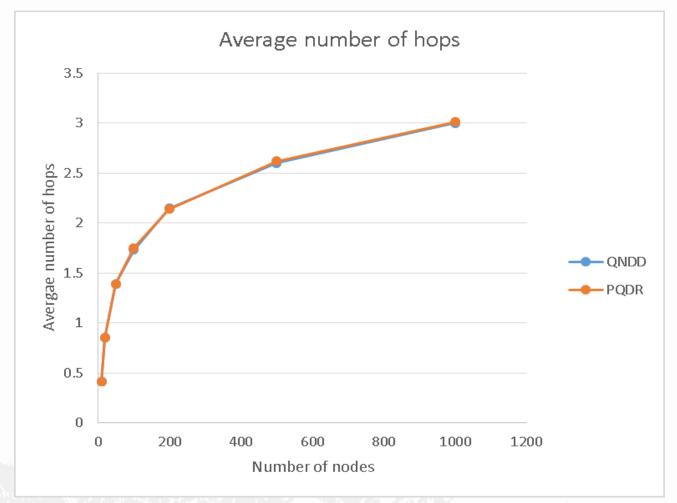

Q-learning-based Node Degree Dependent (Q-NDD)

Predictive Q-learning Deflection Routing (PQDR)

Comparison shows that with increase in the number of flow the burst loss probability increases and PQDR algorithm has more burst loss.

Graphs and Results – Deflection ratio

Deflection ratio = Number of deflected bursts / Total number of transmitted bursts


Q-learning-based Node Degree Dependent (Q-NDD)

Predictive Q-learning Deflection Routing (PQDR)

Comparison shows that the deflection ratio also increases with the number of flows and the QNDD algorithm has higher deflection ratio.

Graphs and Results – Hop count

Q-learning-based Node Degree Dependent (Q-NDD)

Predictive Q-learning Deflection Routing (PQDR)

Comparison shows that average hop count for both QNDD and PQDR algorithm are the same.

Results Summary

Burst loss Low High	orithm
Burst loss Low High	
Number of deflection High Low	
Average hop count Equal Equa	l

Q-NDD Algorithm performs much better than PQDR algorithm.

Challenges

- Porting code to Ubuntu 18.04 and latest ns-3.29 simulator
- Calculation for burst loss probability
- Result for plotting the graph

References

- S. Haeri and L. Trajkovic´, "Deflection Routing in Complex Networks," in Complex Systems and Networks, Berlin, Springer, 2015, pp. 395-422.
- S. Haeri and L. Trajkovic, "Intelligent deflection routing in buffer-less networks," IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 316-327, Feb. 2015.
- C. Qioa and M. Yoo, "Optical burst switching (OBS) a new paradigm for an optical internet," Journal of High Speed Networks, vol. 8, no. 1, pp. 69-84, Mar. 1999.
- A. Zalesky, H. Vu, Z. Rosberg, E. Wong and M. Zukerman, "OBS contention resolution performance," Performance Evaluation, vol. 64, no. 4, p. 357–373, May 2007.
- D. H. Patel and D. K. Kothari, "Overview and framework for dynamic deflection contention resolution in OBS network," in 2013 Nirma University International Conference on Engineering (NUiCONE), Ahmendabad, India, Nov 2013.

Thanks! Questions?